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Fig. 1: Overview. (a) Our proposed framework HUSKY enables the humanoid robot to perform complete real-world skateboarding, including pushing,
steering, and phase transitions. (b) Generalization to diverse outdoor scenarios and skateboards with consistent stability and control. (c) Reliable indoor
skateboarding performance. (d) Lean-to-steer behaviors achieved by exploiting robot body tilt. (e) Robustness against external disturbances.

Abstract—While current humanoid whole-body control frame-
works predominantly rely on the static environment assumptions,
addressing tasks characterized by high dynamism and complex
interactions presents a formidable challenge. In this paper,
we address humanoid skateboarding, a highly challenging task
requiring stable dynamic maneuvering on an underactuated
wheeled platform. This integrated system is governed by non-
holonomic constraints and tightly coupled human-object inter-
actions. Successfully executing this task requires simultaneous
mastery of hybrid contact dynamics and robust balance control
on a mechanically coupled, dynamically unstable skateboard. To
overcome the aforementioned challenges, we propose HUSKY, a
learning-based framework that integrates humanoid-skateboard
system modeling and physics-aware whole-body control. We
first model the coupling relationship between board tilt and
truck steering angles, enabling a principled analysis of system
dynamics. Building upon this, HUSKY leverages Adversarial
Motion Priors (AMP) to learn human-like pushing motions and

employs a physics-guided, heading-oriented strategy for lean-
to-steer behaviors. Moreover, a trajectory-guided mechanism
ensures smooth and stable transitions between pushing and
steering. Experimental results on the Unitree G1 humanoid
platform demonstrate that our framework enables stable and
agile maneuvering on skateboards in real-world scenarios. The
project page is available on project page.

I. INTRODUCTION

Recent advancements in robotic hardware and control al-
gorithms have enabled humanoid robots to perform a wide
range of whole-body control tasks, including locomotion over
complex terrains [29, 37, 21], dancing [13, 19, 41, 11], loco-
manipulation [5, 31], and fall recovery [15, 16]. However,
learning skateboarding skills for humanoid robots remains a
highly challenging and largely unexplored problem. While
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existing approaches primarily focus on contact-rich whole-
body control tasks [48, 43] and humanoid–object interaction
scenarios [38, 39], humanoid skateboarding involves even
more intricate contact dynamics and hybrid motion transitions.
Furthermore, the shift from interacting with static objects to
an underactuated wheeled platform challenges existing control
frameworks, rendering them inadequate for stable humanoid
skateboarding system.

Traditional model-based approaches typically leverage sim-
plified dynamic models for trajectory generation and Model
Predictive Control (MPC) to synthesize skateboarding ma-
neuvers for legged robots [32, 33, 42]. While these classical
methodologies can generate controlled motions, the high com-
putational cost of solving high-dimensional, non-convex op-
timization problems often precludes the real-time responsive-
ness required for dynamic skateboarding. Moreover, simplified
models are insufficient to capture the complex non-holonomic
and underactuated dynamics inherent to skateboarding, result-
ing in limited robustness to unmodeled physical effects and
environmental variations. Although agile skateboarding skills
can be achieved in simulation [23], they overlook physical
hardware constraints and the sim-to-real gap, making direct
real-world deployment highly challenging.

Deep Reinforcement Learning (DRL) has recently emerged
as a powerful alternative, leveraging large-scale parallel train-
ing to synthesize complex behaviors with minimal modeling
assumptions and robust performance. Recent researches have
demonstrated the effectiveness of RL in diverse tasks, from
force-controlled interaction [50] and end-effector control [18]
to quadrupedal skateboarding [20, 4] and humanoid roller skat-
ing [7], highlighting RL’s capacity to manage complex contact
dynamics and stabilize high-speed, underactuated systems.

However, humanoid skateboarding introduces substantially
greater challenges, due to the emergence of a tightly coupled,
highly underactuated system. The humanoid itself already
possesses high-dimensional state and action spaces, which
inherently increase the complexity of learning-based whole-
body control. This difficulty is dramatically compounded by
the dynamic skateboard, whose motion is governed by intricate
physical interactions between its wheels and the ground, as
well as between the robot’s feet and the board [36, 17].
The resulting dynamics are not only highly nonlinear but
also create a scenario where the robot must indirectly con-
trol its own moving support base. This tight coupling and
severe underactuation lead to significant instability and sim-to-
real discrepancies, causing existing learning-based whole-body
controllers to struggle with robust coordination.

In this paper, we propose HUSKY, a physics-aware whole-
body controller for humanoid skateboarding system. HUSKY
first explicitly analyzes the coupled humanoid–skateboard
system and derives an equality constraint between board tilt
and truck steering angles, enabling physics-informed policy
learning. The skateboarding task is formulated as a hybrid
dynamical system with discrete contact phases, capturing the
distinct pushing and steering behaviors inherent to skateboard
locomotion. Based on this modeling, we employ DRL to train

the humanoid to acquire the essential skateboarding skills,
including propulsion through pushing and directional control
through steering. To enhance the robustness and naturalness
of pushing behaviors, HUSKY leverages Adversarial Motion
Priors (AMP) [28] to guide the policy toward human-like
propulsion motions. Steering is achieved through a physics-
aware strategy that exploits the intrinsic coupling between hu-
manoid body lean and skateboard truck steering. To facilitate
exploration across distinct phases and ensure smooth transi-
tions, HUSKY integrates a trajectory planning mechanism
that stabilizes transitions between pushing and steering, result-
ing in continuous and coordinated skateboarding behaviors.

Taken together, HUSKY enables the humanoid to achieve
agile, stable skateboarding maneuvers, as validated in both
simulation and real-world experiments. Our main contributions
are summarized as follows:

• We model the humanoid skateboarding system by explic-
itly incorporating the tilt–steering constraint and formu-
late the skateboarding task as a hybrid dynamical system
characterized by distinct contact phases.

• We develop a learning-based whole-body control frame-
work that integrates AMP-based pushing, physics-guided
steering, and trajectory planning for phase transitions.

• We validate HUSKY in both simulation and real-world
experiments, demonstrating agile, stable, and human-like
humanoid skateboarding maneuvers.

II. HUMANOID-SKATEBOARD SYSTEM

A. System Modeling

We consider a humanoid robot interacting with a fully
passive articulated skateboard via foot contacts, with all actu-
ation provided by the humanoid. As illustrated in Fig. 2, the
skateboard comprises three main components: the deck, trucks,
and wheels. The deck supports the humanoid’s weight and
transmits forces to the trucks, which connect the deck to the
wheels. In real skateboards, the trucks use a kingpin-based sus-
pension with elastic bushings, which converts deck tilting into
truck steering while providing force damping. While directly
modeling the full suspension in simulation is challenging due
to its structural complexity and compliance. Therefore, we
adopt a simplified kinematic model that preserves the key
lean-to-steer behavior while remaining tractable for control
and simulation.

Under this formulation, wheel–ground contacts are modeled
as non-holonomic rolling constraints that restrict lateral slip.
Instead of explicitly resolving the constraint forces, we exploit
the truck geometry to relate the board tilt angle γ to the
rotation of the truck axes. Due to the mechanical structure
of the trucks, tilting the board by γ induces a coordinated
rotation of the truck axes, resulting in a kinematic coupling
[36] described by:

tanσ = tanλ sin γ, (1)

where λ is the constant rake angle of the skateboard, and σ
is the resulting truck steering angle. Intuitively, this implies
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Fig. 2: Skateboard Model. We analyze the skateboard kinematic structure
and derive the coupling relationships among the board tilt, truck steering, and
rake angles, which form the basis of the lean-to-steer behavior.

that the truck steering angle is determined by the board tilt
angle, with larger tilts producing greater steering deflections.
Detailed derivation is provided in Appendix A.

This abstraction directly links board tilt to truck steering,
capturing the essential equality constraint of humanoid-driven
maneuvers while avoiding unnecessary mechanical redundan-
cies. The resulting model is both computationally efficient and
physically representative, providing a tractable foundation for
subsequent control and learning of humanoid skateboarding.

B. Humanoid Skateboarding Task

We formulate humanoid skateboarding as a hybrid control
task, comprising two periodically recurring phases, pushing
and steering, which arise from discrete changes in the system’s
contact topology. Each phase is governed by distinct dynamics
and control objectives.

During the pushing phase (Section III-B), one foot of the
humanoid maintains contact with the skateboard to stabilize
the body, while the other intermittently contacts the ground to
generate propulsion. Forward motion is produced by tangen-
tial ground reaction forces at the pushing foot, whereas the
supporting foot ensures balance on the moving board.

In the steering phase (Section III-C), both feet of the
humanoid remain on the skateboard, producing a passive
gliding motion. Steering is achieved by modulating the board
tilt through body leaning, which induces truck rotation and
allows the humanoid to follow a desired heading.

While transitions between pushing and steering are chal-
lenging due to the distinct dynamics and control objectives
of each phase. In Section III-D, we describe strategies to
explicitly bridge these phases, enabling smooth and stable
phase transitions during humanoid skateboarding.

III. METHOD

A. Problem Formulation

In this work, we adopt the Unitree G1 humanoid robot [35]
with 23 controllable degrees of freedom (DoF), excluding
the three DoFs of each wrist. We formulate the humanoid
skateboarding task as a RL problem, in which the agent
interacts with the environment through a policy π to maximize
cumulative reward. At each timestep t, the policy receives
the state st and outputs an action at ∈ R23, which is
subsequently mapped to motor torques via a PD controller.
This defines the policy as π(at|st). The environment dynamics
p(st+1|st,at) determine the next state, while a dense reward
r(st,at) evaluates skateboarding performance while providing
regularization. The agent aims to maximize the expected return
J = E

[∑T−1
t=0 βtrt

]
, where β denotes the discount factor.

We utilize an asymmetric actor–critic framework for policy
training, where the actor observes only proprioceptive infor-
mation, while the critic has access to additional privileged
information. At each timestep t, the policy state st consists
of a short history of proprioceptive states oprop

t−4:t, where each
proprioceptive state oprop

t ∈ R78 is defined as

oprop
t = [ct,ωt, gt,θt, θ̇t,at−1,Φ], (2)

where ct = [vcmd, ψ] ∈ R2 contains the desired skateboard
forward velocity vcmd and heading target ψ, ωt ∈ R3 is the
base angular velocity, gt ∈ R3 is the base projected gravity,
θt ∈ R23 and θ̇t ∈ R23 are the joint angles and velocities, and
at−1 ∈ R23 is the previous action. The phase cycle is repre-
sented by a normalized variable Φ = (t mod H)/H ∈ [0, 1),
where H is the cycle duration. This periodic variable governs
transitions between pushing and steering phases, serving as a
temporal reference for the policy.

To expose the skateboard state to the critic during training,
we define the privileged observation opriv

t as

opriv
t = [vt,p

b
t , r

b
t ,v

b
t ,ω

b
t ,θ

b
t ,f

g
t ,f

b
t ], (3)

where vt ∈ R3 denotes the robot base linear velocity, pbt ∈ R3,
rbt ∈ R6, vbt ∈ R3 and ωbt ∈ R3 represent the skateboard base
position, orientation, linear velocity and angular velocity in the
robot’s frame, respectively. θbt ∈ R3 is the skateboard’s tilt and
truck joint angles, while fgt ∈ R6 and f bt ∈ R6 represent the
humanoid’s feet contact forces with ground and skateboard,
respectively. To guide the humanoid toward the desired behav-
iors in each phase, we detail phase-specific reward functions
in Appendix C. The overall reward is formulated as:

rt = Ipush · rpush
t + Isteer · rsteer

t + Itrans · rtrans
t + rreg

t , (4)

where Ipush, Isteer, and Itrans are binary indicators denoting the
current contact phase, and rreg

t is a global regularization term.

B. Adversarial Motion Prior for Pushing Style

During the pushing phase, the primary objective is to
achieve a target skateboard velocity vcmd by generating phys-
ically plausible propulsion through intermittent foot-ground
contacts. Traditional reference-tracking methods enforce strict



Fig. 3: Framework of HUSKY. (a) We first analyze and model the humanoid–skateboard system, deriving a physics-inspired lean-to-steer coupling mechanism.
Due to the distinct contact dynamics and control objectives across skateboarding phases, we adopt a phase-wise learning strategy. (b) The learning-based
whole-body control framework integrates an AMP-based pushing style for active forward propulsion, a steering strategy guided by physics-aware tilt references,
and a trajectory-guided transition mechanism to enable stable switching between pushing and steering phases.

adherence to predefined joint trajectories [27], resulting in
rigid behaviors that limit adaptation to varying environments
and velocity demands. To encourage more natural and robust
behaviors, we build on the AMP framework, which employs a
discriminator Dϕ to distinguish policy rollouts from reference
human pushing motions.

The AMP observation is defined as the robot joint angles
oamp
t = θt ∈ R23. To provide the discriminator with temporal

context, we construct a motion window τt = {oamp
t−3, . . . ,o

amp
t+1}

spanning five timesteps. Reference transitions are sampled
from a human motion dataset M, while generated transitions
are collected from the current policy rollouts P .

The discriminator is trained to distinguish between expert
and agent motions using a least-squares loss, augmented with
a gradient penalty to promote training stability:

argmax
ϕ

Eτ∼M[(Dϕ(τ)− 1)2] + Eτ∼P [(Dϕ(τ) + 1)2]

+
αd

2
Eτ∼M[∥∇ϕDϕ(τ)∥2]. (5)

The discriminator output d = Dϕ(τt) is then mapped to a
bounded style reward:

rstyle(st) = α ·max

(
0, 1− 1

4
(d− 1)2

)
, (6)

where α is a scaling coefficient. The total reward for the
pushing phase combines task-specific and style components:

rpush
t = rtask

t + rstyle
t . (7)

Here, rtask
t encourages accurate tracking of the commanded

skateboard velocity, while rstyle
t guides the humanoid to exhibit

human-like pushing behaviors.

C. Physics-Guided Heading-Oriented Steering

In the steering phase, the humanoid receives a target heading
command ψ and leans its body to induce a board tilt γ, which,
through the truck geometry coupling in Eq. (1), produces the

corresponding truck steering angle σ and achieves the desired
turning behavior. To exploit this physical coupling, we provide
the humanoid with a physics-guided reference specifying the
desired board tilt angle for heading regulation.

Assuming a planar kinematic model of the skateboard,
we adopt a bicycle-model approximation commonly used in
vehicle dynamics [44], which captures the yaw motion of the
skateboard while neglecting lateral slip and vertical dynamics.
Under this formulation, the yaw rate ψ̇ is given by:

ψ̇ =
v

L
tanσ, (8)

where v is the forward velocity of the skateboard in its base
frame, and L is the wheelbase. Combining this with the lean-
to-steer relationship in Eq. (1), we obtain

ψ̇ =
v

L
tanλ sin γ, (9)

which links the board tilt angle γ to the resulting yaw rate.
Given a desired heading change ∆ψ = ψ − ψboard over a

steering horizon ∆t, where ψboard denotes the current heading
of the skateboard, we assume a constant yaw rate ψ̇ ≈ ∆ψ/∆t
to achieve a smooth and gradual turn. Substituting this into
Eq. (9) yields the physics-guided tilt reference:

γref = arcsin

(
L∆ψ

v∆t tanλ

)
, (10)

where γref represents the desired board tilt angle that mini-
mizes the heading error. To ensure numerical stability at low
speeds or large desired turns, we clip v to a minimum threshold
and constrain γref within feasible lean limits.

We define a tilt reward to guide the policy toward this
physically consistent lean:

rtilt = exp

(
−∥γ − γref∥2

σ2
γ

)
, (11)



where σγ sets the tolerance. This is combined with a heading-
tracking reward rheading = exp(−(∆ψ)2/σ2

ψ), ensuring that
the policy aligns the skateboard with the target direction while
maintaining a physically feasible lean angle.

To further promote balance and stable foot placement during
steering, two virtual markers are defined above the skateboard
trucks. These markers indicate preferred feet contact locations,
and the policy is encouraged to place the feet close to them,
providing auxiliary guidance for the humanoid’s stance.

D. Trajectory Planning for Phase Transition

Direct transitions between the pushing and steering phases
are challenging due to differences in body poses, contact
dynamics, and learning objectives. Policies trained without
explicit transition guidance often fail to explore new contact
phases, which can lead to convergence to local optima [49].

To address this problem, we introduce a trajectory-guided
transition mechanism that explicitly bridges the pushing and
steering phases by generating intermediate reference states.
Specifically, we select a set of key bodies, denoted by K,
which capture the humanoid’s essential motion during phase
transitions. The positions and orientations of these key bodies
relative to the skateboard are then used to plan smooth and
physically consistent transition trajectories.

At the end of the current phase, the humanoid’s key body
poses (pK

end, q
K
end) are obtained online and serve as the initial

condition for trajectory planning. Unlike predefined motions,
these terminal poses vary across episodes and policies, result-
ing in a state-dependent transition problem.

For each phase, we also define a canonical stable pose
(pK

ref, q
K
ref) relative to the skateboard frame, representing the

nominal start configuration of the subsequent phase. The
transition is therefore formulated as a trajectory connecting
the online terminal pose of the current phase to the fixed
reference pose of the next phase. For example, the end pose
of the pushing phase is planned toward the steering phase
reference pose, and vice versa.

For body translations, the planned Cartesian position at
timestep t is generated using an n-th order Bézier curve:

pK(t) =

n∑
i=0

(
n

i

)
(1− s)n−isi pK

i , s =
t− t0
tf − t0

, (12)

where pK
0 = pK

end and pK
n = pK

ref denote the initial and
target positions, and {pK

i }
n−1
i=1 are intermediate control points

shaping the trajectory. Here, t0 and tf are the start and end
times of the transition.

Boy orientations are interpolated using spherical linear
interpolation (slerp) between quaternions:

qK(t) =
sin((1− s)Ω)

sinΩ
qK

end +
sin(sΩ)

sinΩ
qK

ref, (13)

where s = t−t0
tf−t0 and Ω = arccos(⟨qK

end, q
K
ref⟩) is the angular

distance between the quaternions. This ensures smooth and
physically consistent orientation transitions while stepping
onto or off the skateboard.

At each transitional timestep t, the policy receives a tracking
reward that encourages it to follow the planned trajectories
(pK(t), qK(t)). This trajectory-guided guidance shapes the
exploration space, enabling reliable phase switching while
retaining sufficient flexibility for the policy to adapt to dy-
namic interactions. By integrating trajectory-guided transitions
with phase-specific learning objectives, the humanoid achieves
stable and repeatable transitions between pushing and steering,
facilitating consecutive skateboarding behaviors.

E. Sim-to-Real Transfer

1) Skateboard Physical Identification: To bridge the sim-
to-real gap, we identify an equivalent PD model for the skate-
board’s passive tilt dynamics (back view of Fig. 2) through
a sequential analytical identification procedure based on its
free-decay roll response [25]. Specifically, the skateboard is
perturbed in roll and released, allowing the truck bushings and
pivot friction to produce a naturally decaying oscillation. We
first quantify energy dissipation by measuring two successive
roll angle peaks, ϕ(t) and ϕ(t+T ). The logarithmic decrement
δ and the corresponding damping ratio ζ are computed as

δ = ln
ϕ(t)

ϕ(t+ T )
, ζ =

δ√
4π2 + δ2

, (14)

where T is the observed oscillation period. This damping ratio
captures the intrinsic dissipative effects of the truck bushings
and pivot interfaces. Given the identified ζ, we estimate the
equivalent torsional stiffness of the truck assembly by match-
ing the observed roll oscillation frequency. The undamped
natural frequency is computed as:

ωn = ωd/
√
1− ζ2, (15)

where ωd = 2π/T is the damped frequency. Approximating
the skateboard’s roll inertia I using a rigid cuboid model
dominated by the deck geometry, the torsional stiffness is
identified as k = Iω2

n, which represents the restorative torque
generated by the bushings under roll deformation. Finally,
the velocity-dependent damping coefficient is obtained as
d = 2ζ

√
kI , modeling the dissipative torque arising from

bushing hysteresis and pivot friction. Embedding the identified
parameters (k, d) into simulation yields a physically grounded
tilt spring–damper model that faithfully reproduces the passive
truck mechanics observed on the real skateboard.

2) Domain Randomization: To further improve policy ro-
bustness and facilitate effective sim-to-real transfer, we employ
domain randomization (DR) during training. The detailed
configurations are provided in Table I.

IV. EXPERIMENTS

A. Experiment Setup

In simulation, we use a standard 80cm × 20cm × 12cm
skateboard model, the coupling mechanism in Eq. (1) is
embedded into the simulator as an equivalent constraint. The
details of skateboard model are provided in Appendix B.
All trainings and evaluations are implemented in mjlab [45],
which integrates MuJoCo physics [34] with the IsaacLab



TABLE I: Domain Randomization Parameters.

DR terms Range Unit

Robot Center of Mass U(2.5, 2.5) cm
Skateboard Center of Mass U(2.5, 2.5) cm
Default Root Position U(2.0, 2.0) cm
Default Joint Position U(0.01, 0.01) rad
Push Robot Base U(−0.5, 0.5) m/s
Robot Body Friction U(0.3, 1.6) -
Skateboard Deck Friction U(0.8, 2.0) -

API [24]. Humanoid skateboarding policies are trained using
the PPO [30] algorithm across 4,096 parallel environments,
with each episode lasting 20 seconds. For each experiment,
we evaluate 1,000 rollout episodes in simulation and report
results over five random seeds. Additional training details are
given in Appendix D. In real-world experiments, the policy
is deployed on a Unitree G1 humanoid robot at 50 Hz, with
joint positions tracked by a 500 Hz PD controller.

1) Evaluation Metrics: We adopt the following metrics to
evaluate the humanoid skateboarding performance:

• Task success rate (Esucc): Defined as the percentage of
episodes completed without termination.

• Velocity tracking error (Evel): Measured as the mean
absolute error between the commanded velocity vcmd and
the actual skateboard forward velocity vboard during the
pushing phase: Evel = E [|vcmd − vboard|].

• Heading tracking error (Eyaw): Quantifies the accuracy
of heading control during steering phase using the head-
ing error: Eyaw = E [|ψ − ψboard|].

• Motion smoothness (Esmth): Evaluated by aggregating
joint angle variations across consecutive control steps,
promoting temporally smooth and plausible behaviors.

• Contact error (Econtact): Defined as the per-step violation
of the foot–board contact pattern, i.e., single-foot contact
during pushing and double-foot contact during steering.

2) Baselines: To evaluate the effectiveness of HUSKY, we
compare it with the following ablated baseline variants:

• Pushing style: We consider two baselines: (i) a Tracking-
based variant that directly tracks reference skateboarding
motions from M, and (ii) a Gait-based variant in which
the humanoid’s pushing follows a fixed gait schedule.

• Steering strategy: We compare our steering design with
a w/o Tilt Guidance baseline, where the policy implicitly
learn board tilt angles for steering without physics-guided
tilt reference.

• Transition mechanism: We evaluate two variants: (i)
AMP Transition, which uses phase-specific reference
motions, including stepping onto and off the skateboard,
and relies on style rewards to guide transitions, and (ii)
Translation-only, which guides only translational motion
while ignoring orientation, underscoring the importance
of jointly controlling both position and rotation during
phase transitions.

B. Main Results

Table II summarizes the overall performance of HUSKY
compared to the baselines across metrics. These results demon-
strate that HUSKY enables robust humanoid skateboarding
with stable, accurate, smooth motions and continuous, reliable
phase transitions. The contributions of the key design choices
are summarized as follows:

AMP enables flexible and natural pushing. For pushing,
the Tracking-based baseline strictly follows reference motions,
limiting its adaptability to varying contact timings and veloc-
ities and leading to the lowest success rate. The Gait-based
baseline, lacking human motion priors, produces less smooth
motions and higher contact errors, reflecting its difficulty in
generating coordinated, human-like pushing behaviors.

Physics-guided steering enhances heading control. For
steering, the w/o Tilt Guidance baseline learns board tilt angles
implicitly, which reduces heading accuracy and highlights
the importance of explicitly incorporating the lean-to-steer
coupling for precise directional control.

Trajectory guidance is essential for phase transitions. For
phase transitions, the AMP Transition baseline, which relies
solely on full reference motions, achieves moderate success
rates but incurs significant contact errors, as the robot fails to
explore proper phase switching. The Translation-only baseline,
which guides translation while omitting orientation alignment,
exhibits poor heading tracking, causing the robot to align with
the board direction rather than adopt a side-on posture and
making steering control difficult.

C. More Analysis

Skateboard Modeling (Fig. 4). We validate the effect of
skateboard modeling and visualize the resulting steering tra-
jectories in Fig. 4 (a). Similar to prior simplified models [20],
omitting the equality constraint in Eq. (1) prevents board tilting
from inducing truck steering, leaving the skateboard able only
to glide straight forward with negligible turning capability.

Fig. 4 (b) compares policies trained without tilt guidance
under identical steering commands by measuring the range
of reachable headings. Without tilt guidance, the achievable
heading range is narrow. In contrast, incorporating tilt guid-
ance produces smooth turning trajectories and enables the
humanoid to reach a substantially wider range of headings with
higher precision. These results demonstrate that tilt guidance
is essential for effective and precise turning control.

Phase Exploration (Fig. 5). To further analyze the necessity
of transition guidance, we train policies without it under two
settings: (i) all episodes are initialized to start in the pushing
phase, matching our setup, and (ii) a 50/50 mixture of pushing
and steering phases, as used in prior work [20] to promote
phase exploration. We measure episode length and a steering
contact reward, which encourages double-foot board contact
and penalizes ground contact during steering.

In both settings, episode length increases rapidly during
early training, yet the steering contact reward remains low,
indicating persistent incorrect foot–board contact patterns.
This suggests that policies trained without transition guidance



TABLE II: Simulation Results.

Method Esucc ↑ Evel ↓ Eyaw ↓ Esmth ↓ Econtact ↓

Ablation on Pushing Style
HUSKY-Tracking-Based 11.12±3.86 0.435±0.101 0.568±0.092 0.044±0.025 0.015±0.010

HUSKY-Gait-Based 82.38±7.25 0.102±0.035 0.302±0.041 0.043±0.011 0.130±0.072

HUSKY (ours) 100.00±0.00 0.056±0.013 0.208±0.014 0.033±0.005 0.001±0.001

Ablation on Steering Strategy
HUSKY-w/o-Tilt Guidance 96.72±2.10 0.071±0.010 0.233±0.027 0.035±0.017 0.002±0.002

HUSKY (ours) 100.00±0.00 0.056±0.013 0.208±0.014 0.033±0.005 0.001±0.001

Ablation on Transition Mechanism
HUSKY-AMP Transition 85.12±4.11 0.053±0.025 0.265±0.050 0.040±0.007 0.394±0.015

HUSKY-Translation-only 89.55±2.30 0.064±0.020 0.294±0.075 0.039±0.012 0.038±0.012

HUSKY (ours) 100.00±0.00 0.056±0.013 0.208±0.014 0.033±0.005 0.001±0.001

Fig. 4: Steering Trajectories Visualizations. (a) Omitting lean-to-steer
coupling prevents effective steering. (b) Incorporating physics-guided tilt
guidance substantially increases the reachable heading range and precision.

Fig. 5: Training Performance Comparison. Episode length (left) and
steering contact reward (right). Without transition guidance, the policy fails to
maintain correct foot–board contacts. In contrast, the policy discovers correct
contact patterns early in training and establishes stable phase transitions.

fail to learn phase transitions, collapsing to a trivial pushing-
only behavior and failing to properly execute the steering
phase, even under mixed initialization. In contrast, HUSKY
discovers correct contact patterns by mid-training, successfully
learns foot-mounting transitions, and achieves higher rewards,
demonstrating that trajectory-guided transitions are essential
for enabling phase switching and avoiding local optima.

Trajectories Analysis (Fig. 6). We further examine the
humanoid’s skateboarding transitions by analyzing collected
trajectory sequences. As shown in Fig. 6, the robot maintains
smooth, coordinated whole-body motions with seamless tran-
sitions between pushing and steering. The trajectories display
consistent foot placement and gradual body pose adjustments,
reflecting strong temporal coherence and physical plausibility
enabled by our trajectory-guided transitions.

(a) Pushing to Steering

(b) Steering to Pushing

x y

z

Fig. 6: Transition trajectories analysis. Representative trajectories during
phase transitions. The humanoid maintains smooth, coordinated whole-body
motions, with seamless transitions between pushing and steering.

D. Real-World Experiments

1) Overall Performance: Overall, Fig. 1 and the sup-
plementary videos demonstrate that HUSKY achieves ro-
bust real-world skateboarding across diverse conditions. The
system executes complete skateboarding behaviors including
pushing, steering, and phase transitions, generalizes to differ-
ent skateboard platforms, and performs reliably in both indoor
and outdoor environments. Lean-to-steer control emerges nat-
urally through body tilting, enabling heading regulation. The
humanoid maintains smooth and coordinated foot placements
during transitions, withstands external disturbances, and sus-
tains multiple continuous skateboarding cycles.

2) Transition Details: We analyze the transitions from
pushing to steering, focusing on detailed humanoid feet mo-
tion. In Fig. 7, the transition begins with the foot pushing
against the ground to generate propulsion, followed by lifting
and placing the foot onto the skateboard. Once on the board,
the humanoid performs in-place adjustments, rotating the body
to align the torso perpendicular to the skateboard deck, thereby
facilitating stable steering. These motions closely match hu-
man behaviors and are consistent with our simulation data.



Fig. 7: Details of feet motions during transitions. The humanoid pushes
off the ground, mounts the skateboard, and adjusts orientation on the board.

To account for the high friction of real skateboard decks,
we apply DR during training, varying friction parameters
to improve sim-to-real transfer of foot-mounting and body-
alignment behaviors.

3) Role of System Identification: We evaluate the impor-
tance of skateboard system identification by focusing on
the board’s tilt compliance, which determines how readily
the board responds to humanoid leaning. Experiments are
conducted using two skateboards with distinct tilt stiffness:
one stiffer (black) and one more compliant (pink). As shown
in Fig. 1 (a) and (b), when using the identified parameters
corresponding to each physical board, the robot success-
fully performs push-and-steer maneuvers and achieves smooth
board mounting and dismounting.

Cross-applying the identified parameters reveals the limi-
tations of mismatched system models. In Fig. 8 (a), when
using parameters identified from the compliant board on the
stiffer board, the robot fails to mount. In simulation, the board
tilts under the robot’s stepping motion, allowing the policy
to exploit this compliance for mounting, whereas the real
stiff board remains nearly flat, breaking this assumption and
preventing successful mounting. Conversely, in Fig. 8 (b),
applying the stiff-board parameters to the compliant board
causes excessive leaning and loss of stability during steering,
since the policy is not trained for such compliant dynamics.
These results highlight that accurate identification of board
tilt compliance is critical for sim-to-real transfer of humanoid
skateboarding policies.

V. RELATED WORK

A. Learning-based Humanoid Whole-Body Control

Recent advances in learning-based humanoid whole-body
control have enabled robots to tackle complex control tasks,
leveraging state-of-the-art algorithms and high-fidelity simu-
lators [45, 24, 22]. Existing research primarily focuses on
locomotion [29, 8], motion tracking [26, 13], and teleoper-
ation [12, 46, 47]. These approaches have achieved robust
blind locomotion over uneven terrains [9, 40], highly dynamic
motion tracking [41, 11], agile parkour [51], and complex
manipulation tasks [6]. To enhance environmental perception
and reactive capabilities, many studies have incorporated exte-
roceptive sensors such as LiDAR and depth cameras, enabling
more sophisticated terrain traversal [37, 21, 1] and object
interaction [38, 39, 50]. Our work further investigates the
task of humanoid skateboarding, which demands significantly
higher levels of control agility and whole-body coordination.

Fig. 8: Effect of Skateboard Physical Identification. (a) Applying the
compliant board parameters to the stiff board prevents mounting, as the real
stiff board does not tilt under the robot’s step. (b) Applying the stiff board
parameters to the compliant board causes over-leaning and loss of stability
during steering.

B. Legged Robots on Dynamic Platforms

The interaction between legged robots and dynamic plat-
forms poses significant challenges. Model-based approaches
have enabled quadrupedal robots to perform skateboarding
through offline trajectory optimization [42]. Learning-based
methods further allow quadrupeds to acquire more robust
skateboarding skills, including mounting [3] and maneuvering
the board [20]. By simulating dynamic platform motion in
virtual environments, Huang et al. [14] demonstrated effective
balance control across a variety of unstable surfaces.

Humanoid skateboarding, however, remains especially de-
manding for model-based frameworks [33, 32, 23], as it
requires agile, real-time control and highly accurate physical
modeling [36, 17]. In contrast, while RL has shown great
potential for enabling robust and dexterous humanoid behav-
iors in other domains [2, 10], its application to skateboarding
remains largely unexplored. Our framework leverages these
capabilities to realize learning-based agile skateboarding skills
on a humanoid robot in the real world.

VI. CONCLUSION AND FUTURE WORK

In this work, we present HUSKY, a physics-aware learning
framework that enables humanoid robots to perform agile
skateboarding with active propulsion and lean-to-steer control.
By modeling the coupled humanoid–skateboard dynamics and
explicitly capturing the relationship between board tilt and
truck steering, we decompose the task into pushing, steering,
and transition phases and develop phase-specific learning
strategies. We further introduce a trajectory-guided transition
mechanism to enable smooth and reliable phase switching,
which is critical for long-horizon stability. Extensive simu-
lation and real-world experiments demonstrate that HUSKY
enables continuous and robust skateboarding behaviors on the
Unitree G1 humanoid robot platform.



Despite strong simulation and real-world performance, sev-
eral limitations remain and warrant future investigation.

Onboard Vision. The limited camera field of view prevents
reliable observation of the board and wheel–ground inter-
actions, restricting perception-driven feedback in the control
loop. Incorporating visual state estimation is important for
enabling perception-aware skateboarding control.

Complex Terrains. Current experiments are conducted
on relatively simple terrains, whereas human skateboarders
routinely perform in complex environments such as skateparks
while executing acrobatic maneuvers. Extending our frame-
work to such scenarios will require richer motion priors and
terrain-adaptive control strategies.
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APPENDIX

A. Derivation of Skateboard Equality Constraint
This appendix derives the kinematic relationship between

the deck tilt angle γ and the wheel axle steering angle σ for
a skateboard truck with fixed rake angle λ. The derivation
follows a two-stage rotation sequence constrained by the
wheel-ground contact condition. In Fig. 9 (a), place the origin
at the deck center projection M = (0, 0, 0) with the xy-plane
coinciding with the ground plane. Define:

• Truck pivot center: C = (0, 0, h) where h is the truck
height

• Initial wheel positions: E = (0, w, h), F = (0,−w, h)
where 2w is the truck width

• Kingpin axis BC lies in the horizontal plane at fixed
angle λ relative to the x-axis
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Fig. 9: Kinematic geometry of a skateboard truck. (a) Rotating about the
truck pivot axis. (b) Geometric construction for γ-rotation. (c) Definition of
steering angle σ from top view.

η-rotation about kingpin axis BC. Transforms wheel
positions to:

E′ =
(
w sin η sinλ, w cos η, h− w sin η cosλ

)
(16)

F ′ =
(
−w sin η sinλ, −w cos η, h+ w sin η cosλ

)
(17)

γ-rotation about x-axis. The board tilt corresponds to a
rotation by angle γ about the X-axis. To rigorously derive the
coordinate transformation, we introduce auxiliary points that
exploit the geometry of rotation about a coordinate axis (Fig. 9
(b)). For wheel E′, we define:

• ME′ = (xE′ , 0, 0): orthogonal projection of E′ onto the
X-axis

• The segment ME′ -E′ lies in the plane x = xE′ , perpen-
dicular to the rotation axis

• Rotation about the x-axis preserves x-coordinates and
moves E′ along a circular arc centered at ME′ with radius
rE = ∥ME′ -E′∥

Let αE denote the angle between segment ME′ -E′ and the
positive z-axis. By construction:

rE sinαE = yE′ , rE cosαE = zE′ (18)

After rotation by γ, the angle between ME′ -E′′ and the z-axis
becomes αE − γ. Applying trigonometric addition formulas:

yE′′ = rE sin(αE − γ) = yE′ cos γ − zE′ sin γ (19)
zE′′ = rE cos(αE − γ) = zE′ cos γ + yE′ sin γ (20)

with xE′′ = xE′ preserved by the rotation symmetry. Analo-
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gous definitions for F ′ yield:

xF ′′ = xF ′ (21)
yF ′′ = yF ′ cos γ − zF ′ sin γ (22)
zF ′′ = zF ′ cos γ + yF ′ sin γ (23)

Substituting the expressions for E′ and F ′ gives the complete
transformed coordinates.

Wheel-Ground Contact Constraint. For both wheels to
maintain ground contact simultaneously, their z-coordinates
must be equal (zE′′ = zF ′′ ):

(h− w sin η cosλ) cos γ + w cos η sin γ (24)
= (h+ w sin η cosλ) cos γ − w cos η sin γ (25)

Simplifying yields the fundamental constraint:

cot η = cosλ cot γ (26)

Steering Angle Definition. In Fig. 9 (c), the steering
angle σ is defined geometrically from the projection of E′′

onto the xy-plane relative to the rotated truck center C ′′ =
(0,−h sin γ, h cos γ):

tanσ =
xE′′

yE′′ + h sin γ
(27)

which simplifies to:

tanσ (cos η cos γ + sin η cosλ sin γ) = sin η sinλ (28)

Substituting Eq. (26) into Eq. (28):

tanσ cosλ

(
cos2 γ + sin2 γ

sin γ

)
= sinλ (29)

Finally it yields the exact kinematic relationship, as illustrated
in Eq (1):

tanσ = tanλ · sin γ (30)

TABLE III: Skateboard Bodies

Name Position Type Size

Skateboard deck 0 0 0 Box 0.8 0.2 0.02
Front truck 0 0 -0.09 Box 0.1 0.02 0.02
Front left wheel 0 0.07 0 Cylinder 0.03 0.02
Front right wheel 0 -0.07 0 Cylinder 0.03 0.02
Rear truck 0 0 -0.09 Box 0.1 0.02 0.02
Rear left wheel 0 0.07 0 Cylinder 0.03 0.02
Rear right wheel 0 -0.07 0 Cylinder 0.03 0.02

TABLE IV: Skateboard Joints

Name Type Joint Axis Range

Board tilt joint Hinge -1 0 0 (-0.2, 0.2)
Front truck joint Hinge 0 0 1 (-0.1, 0.1)
Rear truck joint Hinge 0 0 -1 (-0.1, 0.1)
Wheel joints Hinge 0 1 0 Continuous

Markers

Left foot-board collision area

Fig. 10: Skateboard Model in Training. Red and blue markers indicate stabel
foot placement points, while thelight green areas denote collision zones used
for foot-board collision detection.

B. Skateboard Model

The key components of our simplified skateboard model in
MuJoCo are summarized in Table III and Table IV. In simula-
tion, the wheel–ground contact is modeled with six dimensions
(condim = 6), including two tangential, one torsional, and
two rolling directions, to realistically capture wheel–ground
interactions. The rolling friction coefficient is set to 0.001 to
reflect low-resistance wheel motion. As shown in Fig. 10, two
virtual foot-placement markers are positioned above the trucks
to guide stable foot contacts, as illustrated by the blue and red
spheres.

C. Reward Functions

The phase-dependent reward terms, corresponding to push-
ing, steering, and transition modes, as well as regularization,
are summarized in Table V.

D. Training Hyperparameters

We define a skateboarding cycle of 6 seconds with a hybrid
phase structure, including a pushing phase (40%), a foot-
mounting transition phase (10%), a steering phase (45%),
and a dismounting transition phase (5%). All policies are
trained on an NVIDIA RTX 5080 server, with each iteration
taking approximately 2–3 seconds. Training a policy for real-
world deployment requires roughly 20 hours in total. The PPO
hyperparameters used are summarized in Table VI.

E. Foot Contact Detection

To accurately detect foot contacts with the ground and
skateboard, we employ separate contact sensors for each
foot–surface pair: left foot–ground, right foot–ground, left
foot–board, and right foot–board. These sensors filter the
corresponding contact interactions to provide reliable feedback
for reward computation.

In addition, to prevent foot penetration during training, a
small contact collision region is placed on the board at the
designated foot placement locations. This ensures that only
intended foot–board contacts are registered, preventing the
policy from exploiting unintended collisions with other parts of
the skateboard to gain contact rewards. The region is illustrated
as light green shaded areas on the skateboard in Fig. 10,
highlighting where the contact collision is active.



TABLE V: Task Reward terms and weights.

Term Expression Weight Meaning

Pushing Phase rpush
t

Linear velocity tracking exp(−|vboard − vcmd|2/σ2
v) 3.0 Track commanded forward velocity

Yaw alignment exp(−|ψrobot − ψboard|2/σ2
yaw) 1.0 Align robot yaw with skateboard during pushing

Feet air time I(T left foot
air ∈ [Tmin

air , Tmax
air ]) · I(vcmd > vth) 3.0 Encourage proper left-foot lift timing during pushing

Ankle parallel [15] I(Var(zleft ankle) < 0.05 ) · I(left foot on ground)) 0.5 Encourage left foot to remain parallel during pushing
AMP style reward α ·max

(
0, 1− 1/4(d− 1)2

)
5.0 Encourage human-like natural pushing behavior

Steering Phase rsteer
t

Steer feet contact 2 ∗ I(both feet on board)− I(left foot on ground) 3.0 Encourage both feet on board and avoid ground contact
Joint position deviation exp(−∥θt − θ̂t∥22/σ2

jpos) 1.5 Maintain nominal humanoid steering pose
Heading tracking exp(−(ψboard − ψ)2/σ2

ψ) 5.0 Track desired board direction
Board tilt tracking exp(−(γ − γref)

2/σ2
γ) 4.0 Align board lean with physics-guided reference

Feet marker distance exp(−∥pfoot − pmarker∥22/σ2
m) 1.0 Encourage feet near preferred foot markers

Transition rtrans
t

Keybody position tracking exp(−∥pK
t − p̂K

t ∥22/σ2
pos) 10.0 Follow trajectory-planned keybody positions

Keybody orientation tracking exp(−∥qK
t ⊖ qK

t ∥22/σ2
rot) 10.0 Follow trajectory-planned keybody orientations

Regularization rreg
t

Skateboard wheel contact I
(∑4

i=1 ci = 4
)

0.5 Reward full wheel contact, avoid unrealistic detachment
Joint position limits I(qt /∈ [qmin, qmax]) -5.0 Keep joints within safe limits
Joint velocity ∥q̇t∥22 -1e-3 Penalize high joint speeds
Joint acceleration ∥q̈t∥22 -2.5e-7 Penalize abrupt joint accelerations
Joint torque ∥τt∥22 -1e-6 Penalize excessive torque
Action rate ∥at − at−1∥22 -0.1 Encourage smooth actions
Action smoothness ∥at − 2at−1 + at−2∥22 -0.1 Reduce oscillations in control commands
Collision Icollision -10.0 Penalize self-collisions

TABLE VI: Hyperparameters related to PPO.

Hyperparameter Value

Optimizer Adam
Batch size 4096
Mini Batches 4
Learning epoches 5
Entropy coefficient 0.005
Value loss coefficient 1.0
Clip param 0.2
Max grad norm 1.0
Init noise std 1.0
Learning rate 1e-3
Desired KL 0.01
GAE decay factor(λ) 0.95
GAE discount factor(γ) 0.99
Actor MLP size [512, 256, 128]
Critic MLP size [512, 256, 128]
MLP Activation ELU

F. Reference Pose

The initial pose used at the start of training is shown in
Fig. 11 (a), while the canonical reference poses for the pushing
and steering phases are shown in Fig. 11 (b) and Fig. 11 (c).
All these poses are annotated from the human motion dataset
M to ensure realistic posture and limb configurations.

The key bodies used to define these poses include the
pelvis, torso, left and right hips, knees, and ankles, as well as
the left and right shoulders, elbows, and wrists. Representing

(a) (b) (c) 

Fig. 11: Key body reference poses. (a) Default pose used for policy training.
(b) Reference pose for the pushing phase. (c) Reference pose for the steering
phase. All poses are annotated from the human motion dataset M to ensure
realistic humanoid posture configuration.

Fig. 12: Humanoid Skateboarding on Diverse Boards. HUSKY enables
the humanoid to perform skateboarding behaviors across multiple skateboard
platforms, demonstrating the generality and robustness of our method.

the humanoid with these key bodies provides a compact yet
expressive description of its configuration, facilitating smooth
and effective transitions between phases.



G. Results of Skateboard Identification

In this study, the gains of the PD controller were de-
termined via system identification for two skateboard plat-
forms. The moment of inertia (I) of each plant was cal-
culated using the formula for a rectangular prism, resulting
in I = 7.15 × 10−3 kg ·m2 for the first skateboard and
I = 8.70× 10−3 kg ·m2 for the second.

Analysis of the experimental decaying oscillation responses
confirmed that both systems exhibited underdamped second-
order dynamics. For the first skateboard, an oscillation period
of T = 0.107 s was observed, with successive peak amplitudes
of θ(t) = 0.614 and θ(t + T ) = 0.0108. This yielded
controller gains of Kp = 34.835 and Kd = 0.540. The second
skateboard demonstrated a period of T = 0.185 s, with peak
amplitudes of θ(t) = 0.583 and θ(t + T ) = 0.0081, which
resulted in gains of Kp = 14.677 and Kd = 0.402.

H. More Skateboards

We further evaluate HUSKY on a variety of skateboard
platforms. Results show that the humanoid successfully per-
forms skateboarding behaviors, including pushing, steering,
and phase transitions. As shown in Fig. 12, these results
confirm the generality and effectiveness of our approach.
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